

Multidisciplinary research

์ศิริราชพยาบาล มหาวิทยาลัยมหิดล FACULTY OF MEDICINE SIRIRAJ HOSPI

Treatment of β -Thalassemia/Hemoglobin E with Antioxidant Cocktails Results in Decreased **Oxidative Stress, Increased Hemoglobin Concentration, and Improvement of** the Hypercoagulable State

Assoc.Prof. Ruchaneekorn W. Kalpravidh **Department:** Biochemistry Field of interest: Oxidative stress and antioxidants **Contribution:** Corresponding author

Department: Medicine Field of interest: Hematology **Contribution:** Co-author

Orn-uma Yanpanitch Department: Biochemistry Field of interest: Clinical chemistry **Contribution:** First author

Narumol Panichkul Department: Biochemistry Field of interest: Oxidative stress **Contribution:** Co-author

Ratiya Charoensakdi **Department:** Biochemistry Field of interest: Oxidative stress **Contribution:** Co-author

Suneerat Hatairaktham **Department:** Biochemistry Field of interest: Oxidative stress **Contribution:** Co-author

Assist.Prof.Dr. Noppadol Siritanaratkul

Hindawi Publishing Corporation Oxidative Medicine and Cellular Longevity Volume 2015, Article ID 537954, 8 pages http://dx.doi.org/10.1155/2015/537954

Clinical Study

Treatment of β -Thalassemia/Hemoglobin E with Antioxidant Cocktails Results in Decreased Oxidative Stress, Increased Hemoglobin Concentration, and Improvement of the Hypercoagulable State

Orn-uma Yanpanitch,¹ Suneerat Hatairaktham,¹ Ratiya Charoensakdi,¹ Narumol Panichkul,¹ Suthat Fucharoen,² Somdet Srichairatanakool,³ Noppadol Siritanaratkul,⁴ and Ruchaneekorn W. Kalpravidh¹

¹Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand ²Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand ³Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand ⁴Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand

Correspondence should be addressed to Ruchaneekorn W. Kalpravidh; ruchaneekorn.kal@mahidol.ac.th

Received 3 March 2015; Revised 22 April 2015; Accepted 30 April 2015

Academic Editor: Daniela Giustarini

Copyright © 2015 Orn-uma Yanpanitch et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Studies on the antioxidant treatment for thalassemia have reported variable outcomes. However, treatment of thalassemia with a combination of hydrophobic and hydrophilic antioxidants and an iron chelator has not been studied. This study investigated the effects of antioxidant cocktails for the treatment of β -thalassemia/hemoglobin E (HbE), which is the most common form of β -thalassemia in Southeast Asia. Sixty patients were divided into two groups receiving N-acetylcysteine, deferiprone, and either curcuminoids (CUR) or vitamin E (Vit-E), and their hematological parameters, iron load, oxidative stress, and blood coagulation potential were evaluated. Patients were classified as responders if they showed the improvements of the markers of iron load and oxidative stress, otherwise as nonresponders. During treatment, the responders in both groups had significantly decreased iron load, oxidative stress, and coagulation potential and significantly increased antioxidant capacity and hemoglobin concentration. The significantly maximum increase (P < 0.01) in hemoglobin concentration was 11% at month 4 in CUR group responders and 10% at month 10 in Vit-E group responders. In conclusion, the two antioxidant cocktails can improve anemia, iron overload, oxidative stress, and hypercoagulable state in β -thalassemia/HbE.

คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล FACULTY OF MEDICINE SIRIRAJ HOSPITAL

Impact factor = 3.516

Table 1: Patient characteristics.

	Curcuminoids cocktail				Vitamin E cocktail		
	Total	Responders	Non-responders	Total	Responders	Non-responders	
Number of patients	25	16	9	25	19	6	
Age (years)	32.5 ± 1.7	33.9 ± 2.5	30.1 ± 1.7	33.6 ± 2.1	33.0 ± 2.0	31.6 ± 4.3	
Female : male, n	14:11	7:9	7:2	19:6	13:5	6:1	
Splenectomy, n	11	7	4	9	6	3	
Mean % change of serum ferritin at month 4 from baseline	-28.9	-39.7	+4.1	-33.5	-42.5	+4.7	
Mean % change of RBC MDA at month 4 from baseline	-15.8	-24.2	-4.0	-30.1	-37.0	-5.4	

The values represent mean \pm standard error of the mean. MDA: malondialdehyde; RBC: red blood cells.

Figure 1: Percentage changes of hemoglobin concentration during and after the treatment period in patients with β -thalassemia/hemoglobin E who responded to treatment with antioxidant cocktails. 4/6

คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิคล FACULTY OF MEDICINE SIRIRAJ HOSPITAL

Table 2: Hematological, iron load, oxidative stress, antioxidant parameters, and markers of hemolysis in responders.

Parameters	Curcuminoids cocktail ($n = 16$)				Vitamin E cocktail ($n = 19$)			
	Baseline	Month 6	Month 12	Month 15	Baseline	Month 6	Month 12	Month 15
Hematological parameters								
Hemoglobin (g/L)	61.9 ± 2.3	67.8 ± 2.8^{a}	66.9 ± 2.5^{a}	63.9 ± 3.8	65.9 ± 3.4	69.6 ± 3.2	71.7 ± 3.5^{a}	68.1 ± 3.0
RBC count (×10 ¹² cells/L)	3.40 ± 0.16	3.51 ± 0.15	3.52 ± 0.18	3.26 ± 0.18	3.63 ± 0.22	3.66 ± 0.19	3.75 ± 0.1	3.71 ± 0.22
Reticulocyte count (proportion of 1)	0.06 ± 0.01	0.03 ± 0.01^{a}	0.04 ± 0.01	0.06 ± 0.01	0.05 ± 0.01	0.04 ± 0.01	0.04 ± 0.01	0.07 ± 0.02
Iron load parameters								
Serum ferritin (pmol/L)	3651 ± 855	1921 ± 426^{a}	2018 ± 434^a	2415 ± 598	4767 ± 773	2339 ± 532^{b}	2065 ± 655^{b}	2765 ± 622^{a}
Serum NTBI (µmol/L)	5.3 ± 0.6	2.1 ± 0.2^{b}	2.0 ± 0.5^{b}	4.8 ± 1.0	4.9 ± 0.6	1.8 ± 0.3^{b}	1.8 ± 0.3^{b}	5.2 ± 0.7
Oxidative stress parameters								
ROS (%MCF)	51.1 ± 8.8	29.7 ± 3.3^{a}	31.6 ± 6.8^{a}	33.4 ± 4.8^{a}	53.0 ± 7.0	28.6 ± 3.6^{a}	33.5 ± 7.4	48.8 ± 15.1
RBC MDA (nmol/g Hb)	1542 ± 165	1150 ± 107^{a}	934 ± 81^{b}	1469 ± 151	1487 ± 138	815 ± 33^{b}	698 ± 24^{b}	1175 ± 79
Antioxidant parameters								
RBC SOD (U/g Hb)	5395 ± 278	4318 ± 179 ^b	4727 ± 259	5094 ± 334	5051 ± 188	4245 ± 196^{b}	4075 ± 219^{b}	5097 ± 293
RBC GPx (U/g Hb)	63.7 ± 3.2	48.9 ± 1.9^{b}	36.6 ± 1.4^{b}	51.6 ± 2.8^{b}	62.6 ± 2.6	48.9 ± 2.5^{b}	36.6 ± 1.7^{b}	47.3 ± 2.1^{b}
RBC GSH (mmol/L)	1.74 ± 0.05	2.12 ± 0.06^{a}	1.79 ± 0.14	1.76 ± 0.06	1.81 ± 0.04	2.10 ± 0.05^{b}	2.04 ± 0.05^{a}	1.82 ± 0.05
Markers of hemolysis								
AST (U/L)	43.3 ± 5.3	34.7 ± 3.8	35.5 ± 4.6	36.7 ± 4.0	46.7 ± 5.6	29.3 ± 1.9^{b}	26.9 ± 2.6^{b}	30.1 ± 3.0^{a}
Total bilirubin (μ mol/L)	79.4 ± 10.2	58.0 ± 7.7^{a}	62.2 ± 10.2	65.7 ± 6.8	71.6 ± 8.7	57.7 ± 6.3	60.0 ± 7.6	66.2 ± 8.2
Indirect bilirubin (µmol/L)	69.3 ± 9.2	45.9 ± 7.2^{a}	29.4 ± 0.6	50.3 ± 9.6	60.8 ± 8.4	45.4 ± 6.0	49.1 ± 7.4	54.9 ± 8.0

คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล FACULTY OF MEDICINE SIRIRAJ HOSPITAL

Table 3: Procoagulation parameters, markers of platelet activation, and blood coagulation tests in responders.

Curcuminoids cocktail ($n = 16$)					Vitamin E cocktail ($n = 19$)		
Baseline	Month 6	Month 12	Month 15	Baseline	Month 6	Month 12	Month 15
1.15 ± 0.12	0.86 ± 0.09	0.78 ± 0.10^{a}	1.16 ± 0.16	1.24 ± 0.10	0.84 ± 0.08^{b}	0.67 ± 0.06^{b}	1.17 ± 0.12
4.49 ± 0.71	1.90 ± 0.36^{b}	1.64 ± 0.44^{b}	4.18 ± 0.79	5.41 ± 1.03	2.10 ± 0.65^{a}	1.73 ± 0.71^{b}	3.55 ± 1.28
1.02 ± 0.32	0.56 ± 0.16	0.40 ± 0.14	1.16 ± 0.32	0.61 ± 0.15	0.31 ± 0.06	0.24 ± 0.04^{a}	0.61 ± 0.16
21.9 ± 4.0	9.0 ± 1.9^{b}	13.8 ± 3.2	18.1 ± 3.9	16.9 ± 3.1	7.8 ± 2.1	12.3 ± 3.3	20.0 ± 4.6
3.8 ± 1.0	0.9 ± 0.3^{b}	2.0 ± 0.6^{a}	2.4 ± 0.7	4.6 ± 1.1	1.1 ± 0.5^{a}	2.7 ± 1.0	4.1 ± 1.5
15.1 ± 0.2	14.0 ± 0.2^{b}	14.4 ± 0.2	14.5 ± 0.4	14.9 ± 0.2	13.9 ± 0.2^{b}	14.2 ± 0.2^{b}	14.6 ± 0.2
31.3 ± 0.6	28.9 ± 0.6^{a}	29.3 ± 0.8^{a}	29.6 ± 0.8	30.8 ± 0.3	29.1 ± 0.4^{b}	29.0 ± 0.5^{b}	29.4 ± 0.5^{a}
0.50 ± 0.01	0.47 ± 0.01^{a}	0.49 ± 0.01	0.50 ± 0.01	0.50 ± 0.01	0.47 ± 0.01^{a}	0.49 ± 0.01	0.49 ± 0.01
	Baseline 1.15 ± 0.12 4.49 ± 0.71 1.02 ± 0.32 21.9 ± 4.0 3.8 ± 1.0 15.1 ± 0.2 31.3 ± 0.6 0.50 ± 0.01	Curcuminoids of Month 6BaselineMonth 6 1.15 ± 0.12 0.86 ± 0.09 4.49 ± 0.71 1.90 ± 0.36^{b} 1.02 ± 0.32 0.56 ± 0.16 21.9 ± 4.0 9.0 ± 1.9^{b} 3.8 ± 1.0 0.9 ± 0.3^{b} 15.1 ± 0.2 14.0 ± 0.2^{b} 31.3 ± 0.6 28.9 ± 0.6^{a} 0.50 ± 0.01 0.47 ± 0.01^{a}	Curcuminoids cocktail ($n = 10^{10}$ BaselineBaselineMonth 6Month 12 1.15 ± 0.12 0.86 ± 0.09 0.78 ± 0.10^{a} 4.49 ± 0.71 1.90 ± 0.36^{b} 1.64 ± 0.44^{b} 1.02 ± 0.32 0.56 ± 0.16 0.40 ± 0.14 21.9 ± 4.0 9.0 ± 1.9^{b} 13.8 ± 3.2 3.8 ± 1.0 0.9 ± 0.3^{b} 2.0 ± 0.6^{a} 15.1 ± 0.2 14.0 ± 0.2^{b} 14.4 ± 0.2 31.3 ± 0.6 28.9 ± 0.6^{a} 29.3 ± 0.8^{a} 0.50 ± 0.01 0.47 ± 0.01^{a} 0.49 ± 0.01	Curcuminoids cocktail $(n = 16)$ BaselineMonth 6Month 12Month 15 1.15 ± 0.12 0.86 ± 0.09 0.78 ± 0.10^{a} 1.16 ± 0.16 4.49 ± 0.71 1.90 ± 0.36^{b} 1.64 ± 0.44^{b} 4.18 ± 0.79 1.02 ± 0.32 0.56 ± 0.16 0.40 ± 0.14 1.16 ± 0.32 21.9 ± 4.0 9.0 ± 1.9^{b} 13.8 ± 3.2 18.1 ± 3.9 3.8 ± 1.0 0.9 ± 0.3^{b} 2.0 ± 0.6^{a} 2.4 ± 0.7 15.1 ± 0.2 14.0 ± 0.2^{b} 14.4 ± 0.2 14.5 ± 0.4 31.3 ± 0.6 28.9 ± 0.6^{a} 29.3 ± 0.8^{a} 29.6 ± 0.8 0.50 ± 0.01 0.47 ± 0.01^{a} 0.49 ± 0.01 0.50 ± 0.01	Curcuminoids cocktail $(n = 16)$ BaselineMonth 6Month 12Month 15Baseline 1.15 ± 0.12 0.86 ± 0.09 0.78 ± 0.10^{a} 1.16 ± 0.16 1.24 ± 0.10 4.49 ± 0.71 1.90 ± 0.36^{b} 1.64 ± 0.44^{b} 4.18 ± 0.79 5.41 ± 1.03 1.02 ± 0.32 0.56 ± 0.16 0.40 ± 0.14 1.16 ± 0.32 0.61 ± 0.15 21.9 ± 4.0 9.0 ± 1.9^{b} 13.8 ± 3.2 18.1 ± 3.9 16.9 ± 3.1 3.8 ± 1.0 0.9 ± 0.3^{b} 2.0 ± 0.6^{a} 2.4 ± 0.7 4.6 ± 1.1 15.1 ± 0.2 14.0 ± 0.2^{b} 14.4 ± 0.2 14.5 ± 0.4 14.9 ± 0.2 31.3 ± 0.6 28.9 ± 0.6^{a} 29.3 ± 0.8^{a} 29.6 ± 0.8 30.8 ± 0.3 0.50 ± 0.01 0.47 ± 0.01^{a} 0.49 ± 0.01 0.50 ± 0.01 0.50 ± 0.01	Curcuminoids cocktail $(n = 16)$ Vitamin E codBaselineMonth 6Month 12Month 15BaselineMonth 6 1.15 ± 0.12 0.86 ± 0.09 0.78 ± 0.10^{a} 1.16 ± 0.16 1.24 ± 0.10 0.84 ± 0.08^{b} 4.49 ± 0.71 1.90 ± 0.36^{b} 1.64 ± 0.44^{b} 4.18 ± 0.79 5.41 ± 1.03 2.10 ± 0.65^{a} 1.02 ± 0.32 0.56 ± 0.16 0.40 ± 0.14 1.16 ± 0.32 0.61 ± 0.15 0.31 ± 0.06 21.9 ± 4.0 9.0 ± 1.9^{b} 13.8 ± 3.2 18.1 ± 3.9 16.9 ± 3.1 7.8 ± 2.1 3.8 ± 1.0 0.9 ± 0.3^{b} 2.0 ± 0.6^{a} 2.4 ± 0.7 4.6 ± 1.1 1.1 ± 0.5^{a} 15.1 ± 0.2 14.0 ± 0.2^{b} 14.4 ± 0.2 14.5 ± 0.4 14.9 ± 0.2 13.9 ± 0.2^{b} 31.3 ± 0.6 28.9 ± 0.6^{a} 29.3 ± 0.8^{a} 29.6 ± 0.8 30.8 ± 0.3 29.1 ± 0.4^{b} 0.50 ± 0.01 0.47 ± 0.01^{a} 0.49 ± 0.01 0.50 ± 0.01 0.47 ± 0.01^{a}	Curcuminoids cocktail $(n = 16)$ Vitamin E cocktail $(n = 19)$ BaselineMonth 6Month 12Month 15BaselineMonth 6Month 12 1.15 ± 0.12 0.86 ± 0.09 0.78 ± 0.10^a 1.16 ± 0.16 1.24 ± 0.10 0.84 ± 0.08^b 0.67 ± 0.06^b 4.49 ± 0.71 1.90 ± 0.36^b 1.64 ± 0.44^b 4.18 ± 0.79 5.41 ± 1.03 2.10 ± 0.65^a 1.73 ± 0.71^b 1.02 ± 0.32 0.56 ± 0.16 0.40 ± 0.14 1.16 ± 0.32 0.61 ± 0.15 0.31 ± 0.06 0.24 ± 0.04^a 21.9 ± 4.0 9.0 ± 1.9^b 13.8 ± 3.2 18.1 ± 3.9 16.9 ± 3.1 7.8 ± 2.1 12.3 ± 3.3 3.8 ± 1.0 0.9 ± 0.3^b 2.0 ± 0.6^a 2.4 ± 0.7 4.6 ± 1.1 1.1 ± 0.5^a 2.7 ± 1.0 15.1 ± 0.2 14.0 ± 0.2^b 14.4 ± 0.2 14.5 ± 0.4 14.9 ± 0.2 13.9 ± 0.2^b 14.2 ± 0.2^b 31.3 ± 0.6 28.9 ± 0.6^a 29.3 ± 0.8^a 29.6 ± 0.8 30.8 ± 0.3 29.1 ± 0.4^b 29.0 ± 0.5^b 0.50 ± 0.01 0.47 ± 0.01^a 0.49 ± 0.01 0.50 ± 0.01 0.50 ± 0.01 0.47 ± 0.01^a 0.49 ± 0.01

คณะแพทยศาสตร์ศิริราชพยาบาล มหาวิทยาลัยมหิดล FACULTY OF MEDICINE SIRIRAJ HOSPITAL