

Phunsup Wongsurakiat, MD, FCCP Division of Respiratory Disease and TB Department of Medicine, Siriraj Hospital

Pneumonia

Inflammation in lung parenchyma (portion of lower respiratory system distal to terminal bronchioles)

Hospital – Acquired Pneumonia

▶ Pneumonia developed ≥ 48 hours after hospital admission

Ventilator – Associated Pneumonia

▶ Pneumonia developed ≥ 48 hours after endotracheal intubation or tracheostomy to 48 hours after extubation

Ventilator – associated pneumonia

How To Diagnose

Diagnosis

Suspected VAP

- New or progressive CXR infiltrate
- > 2/3 of
 - fever > 38 C
 - leukocytosis or leukopenia
 - purulent secretions

Diagnosis

	Sensitivity	Specificity
CXR infiltrates + 2/3 of fever or leukocytosis/leukopenia or purulent secretions	69%	75%

Why Is VAP Important?

Site Distribution Of Nosocomial Infections In Adult Medical Intensive Care Unit Patients (1992 to 1997)

Cook et al. Ann Intern Med 1998; 126:433

CRUDE MORTALITY RATES OF VENTILATOR-ASSOCIATED PNEUMONIA

First Author	Year of Publication	No, of Patients	Incidence (%)	Diagnostic Criteria	Mortality Rate (%)
Salata	1987	51	41	Clinical-autopsy	76
Craven	1986	233	21	Clinical	55
Langer	1989	724	23	Clinical	44
Fagon	1989	567	9	PSB	71
Kerver	1987	39	67	Clinical	30
Driks	1987	130	18	Clinical	56
Torres	1990	322	24	Clinical-PSB	33
Baker	1996	514	5	PSB/BAL	24
Kollef	1993	277	16	Clinical	37
Fagon	1996	1,118	28	PSB/BAL	53
Timsit	1996	387	15	PSB/BAL	57
Cook	1998	1,014	18	Clinical- PSB/BAL	24
Teiada Artigas	2001	103	22	PSB	44

Ventilator – Associated Pneumonia

➤ Incidence: 17 – 18.8 / 1000 ventilator-days

VENTILATOR-ASSOCIATED PNEUMONIA Mortality

- ➤ Mortality 24 76%
- ➢ Risk ratios of mortality 1.7 4.4 over non VAP
- Attributable mortality 20 30%
 - Intermediate severity
 - High-risk pathogens: Pseudomonas, Acinetobacter spp.

VENTILATOR-ASSOCIATED PNEUMONIA Morbidity & Cost

- ▶ Longer mechanical ventilation 4 32 days
- Longer hospital duration

(Thai, 2 – 45 days)

 \rightarrow 1 cost \approx \$ 20,000 - \$ 40,000

(Thai, 9881.64 Baht)

PREVENTION OF VENTILATOR - ASSOCIATED PNEUMONIA

Contaminant reservoirs in VAP

Ventilator – Associated Pneumonia Pathogenesis

Bacterial Colonization

Oropharynx, Stomach, Sinus

Aspiration

Secretions, Vent Condensate,

Aerosol

Transthoracic Inoculation, Bacteremia, GI Translocation

Ventilator – Associated Pneumonia

Bacterial Inhalation

Contaminated Water, Medication Solutions, Equipment

Inadequate Staffing Low Endotracheal Intracuff Pressure Nursing, Respiratory Therapy ET Tube Supine Position **Aspiration** Secretions, Vent Condensate, Aerosol Gastric **Accidental Extubation** Overdistension Contaminated Water, Medication Solutions, Equipment

General Prophylaxis Infection control Practices

- Effective infection control measures
 - Staff education
 - Adequate staffing
 - Compliance with hand disinfection
 - Isolation to reduce cross-infection with multidrug-resistant (MDR) pathogens
- Surveillance of ICU infections
 - Identify and quantify endemic and new MDR pathogens
 - Guide appropriate antimicrobial therapy

The effect of workload on infection risk in critically ill patients

Conclusions: Staffing is a key determinant of healthcare-associated infection in critically ill patients. Assuming causality, a substantial proportion of all infections could be avoided if nurse staffing were to be maintained at a higher level

Wash Hands

Prevent Spread of Microorganisms

Handwashing on VAP Prevention

- Before and after suctioning
- Touching ventilator equipment
- Contact patients & patient environment (e.g. bed, table)
- Contact with respiratory secretion
- All recommendations are level IA

Invasive Device

Intubation and mechanical ventilation

Endotracheal Tube & VAP

Intubation

Endotracheal tube

- Abnormal continuum between upper airway & trachea
- Establishing a subglottic reservoir of secretions rich in bacterial pathogens...
- Biofilm lines the ET tube
 - allowing distal aerosolization of particulate matter via ventilatory cycle

Intubation

- Avoid intubation
 - Use noninvasive ventilation whenever possible (COPD)
 - Duration of mechanical ventilation (Weaning protocol, sedation)
- Avoid Reintubation
 - 8 fold higher nosocomial pneumonia
 - 6-12 fold higher mortality

Intubation

If you have to, not in the nose...

Use orotracheal tubes to prevent nosocomial sinusitis → pneumonia

Oral Care

Oral Care

Linking oral and dental colonization with respiratory infection

- Modulation of colonization
 - Oral antiseptics
 - Comprehensive oral care

Fig 2 Forest plot showing effect of oral decontamination prophylaxis compared with no prophylaxis on risk of ventilator associated pneumonia

Chan, E. Y. et al. BMJ 2007;334:889

Oral Care

Linking oral and dental colonization with respiratory infection

- Modulation of colonization
 - Oral antiseptics: 2% Chlorhexidine?
 - Comprehensive oral care
 - Pharyngeal Suction before suctioning ETT, before repositioning ETT, before deflating cuff, before repositioning patient to prevent aspiration of pooled secretions

Medications Altering Gastric pH

Tracheal and oropharyngeal colonization with G(-) bacilli

Variable	Antacid (n=76)	Ranitidine (n=73)	Sucralfate (n=75)
Tracheal colonization, n (%)	24 (32)	36 (49)	22 (29)
High-count, n (%)	17 (22)	27 (37)	11 (15)
Oropharyngeal colonization, n	(%)		
	41 (54)	44 (60)	34 (45)
High-count, n (%)	32 (42)	39 (53)	27 (36)

Ann Intern Med 1994;120:653-62

Stress Ulcer Prophylaxis

Who gets stress ulcer prophylaxis in your ICU?

- Mechanical ventilation > 48 h
- Coagulopathy

Modifiable Risk factors Stress bleeding prophylaxis

If needed, stress bleeding prophylaxis with either H2 antagonists or sucralfate (Reduced VAP with sucralfate but slightly higher rate of clinically significant gastric bleeding)

Inadequate Staffing Low Endotracheal Intracuff Pressure Nursing, Respiratory Therapy ET Tube Supine Position **Aspiration** Secretions, Vent Condensate, Aerosol Gastric **Accidental Extubation** Overdistension Contaminated Water, Medication Solutions, Equipment

HOB Elevation 30-45 Degrees

Adult intubated patients (N=86) on mechanical ventilation assigned to semi-recumbent (45°) or supine position

	Semi-recumbent	Supine	
Suspected VAP	8%	34%	
(CI for difference 10-42%: p=0.003)			
Confirmed VAP	5%	23%	
(CI for difference 4-32%:	p=0.018)		

HOB Elevation 30-45 Degrees

- All intubated patients
 All patients on enteral feeds

Reduces Reflux & Aspiration

Endotracheal intracuff pressure (Pcuff)

Pcuff > 30 cmH₂O: tracheal mucosal ischemia & injury

Pcuff < 20 cmH₂O associated with VAP

Rello et al.

Am J Respir Crit Care Med 1996:111-5

Pcuff between 20-30 cmH₂O should be desirable level for intubated patients

Endotracheal intracuff pressure

- ► Monitor Pcuff q < 12 h
- Keep Pcuff 25 30 cmH2O

3/4/51

Gastric Overdistension

Before feeding

- Check position of feeding tube
- Monitor gastric residual volumes
- (Delay feeding if residual volume > 150 -200 mL)
 - Remove feeding tube as soon as possible

Ventilator Circuit Condensate

Ventilator circuit condensate = Reservoir of nosocomial pathogens

- Prevent flushing of condensate into patient & in-line medication
- Regular vigilance
- Drain condensate before repositioning patient
- Avoid cross contamination

Frequency of Equipment Changes

Ventilator Circuit Change Frequency & VAP

Randomized, controlled trials

Ventilator circuit change frequency & VAP

Frequency of Equipment Changes

Prevention of Bacterial Colonization

- Appropriate hand disinfection
- Adequate staffing
- Avoid unnecessary antibiotic administration
- 6 Avoid unnecessary stress ulcer prophylaxis
- 6 Oral Intubation
- Comprehensive oral care

Prevention of Aspiration

- Avoid tracheal intubation / accidental extubation
- Shorten duration of mechanical ventilation
- Semirecumbent positioning
- Maintain endotracheal intracuff pressure
 25 30 cmH2O
- Avoid gastric overdistension
- Avoid ventilator circuit changes / manipulate
- Drain ventilator circuit condensate

