Assoc.Prof.Varodom Charoensawan, Ph.D. (Affiliated Faculty)

  • Ph.D., Molecular Biology University of Cambridge / St John’s College, UK
  • M.Phil., Computational Biology University of Cambridge / St John’s College, UK
  • B.Eng., Biochemical Engineering University College London, UK

ติดต่อ : VC lab @ Mahidol University: Systems Biology of Gene Expression Regulation

Research Profile

With the wealth of data accumulating from completely sequenced genomes and other high-throughput experiments, we now have an unprecedented opportunity to systematically integrate different types of data to unveil novel biological insights. We are utilising computational techniques to analyse publicly available data, as well as new -omic data generated in-house, to improve our understanding on the mechanisms that control gene expression in response to different environmental cues.

As part of Mahidol University’s initiative to promote and support computational and systems biology research, the group are part of Integrative Computational BioScience (ICBS) center, which bring together young scientists from different field, ranging from molecular biology, medicine, and engineering, to solve complex biological questions.

Our group are currently employing Systems Biology to engage Regulation of Gene Expression in the following contexts:

1. Mechanism of diseases and Precision Medicine 

In collaboration with several groups at  Faculty of Medicine Ramathibodi hospital  and Faculty of Medicine Siriraj hospital, we are establishing a pipeline for analyses of large scale data for clinical interpretation and exploration of new disease mechanisms. We have recently obtained genome-scale data of several genetic diseases and cancers (including genomes, transcriptomes, exomes, and proteomes) to look into. 

We have recently established a single-cell omics facility at Mahidol University, to further characterise the mechanisms of several diseases and host immune systems, including cancers and viral infections, at single-cell resolution using  single-cell ATAC-seq and single-cell RNA-seq.

Read more: Suktitipat 2014Jinawath 2016Kitdumrongthum2018Sukjoi2020Schweitzer2020Poonpanichakul2021,  Arora2022

2. Adaptation to climate change

We collaborate with multiple groups in Thailand and abroad to Systems Biology approaches (e.g. RNA-seq and ChIP-seq) and bioinformatics (e.g. machine learning) to contribute new insights into to effects and adaptation to abiotic stresses such as temperature and salinity, especially in the context of climate change. 

Read more: Mhauntong 2015Jung 2016Cortijo and Charoensawan 2017Ezer2017Gavrin2020Tong2020Jenkitkonchai2021

1. Wilson, D., Charoensawan, V., Kummerfeld, S. K., & Teichmann, S. A. (2008). DBD--taxonomically broad transcription factor predictions: new content and functionality. Nucleic acids research, 36(Database issue), D88–D92. https://doi.org/10.1093/nar/gkm964
2. Lister, A., Charoensawan, V., De, S., James, K., Janga, S. C., & Huppert, J. (2009). Interfacing systems biology and synthetic biology. Genome biology, 10(6), 309. https://doi.org/10.1186/gb-2009-10-6-309
3. Charoensawan, V., Wilson, D., & Teichmann, S. A. (2010). Lineage-specific expansion of DNA-binding transcription factor families. Trends in genetics : TIG, 26(9), 388–393. https://doi.org/10.1016/j.tig.2010.06.004
4. Charoensawan, V., Wilson, D., & Teichmann, S. A. (2010). Genomic repertoires of DNA-binding transcription factors across the tree of life. Nucleic acids research, 38(21), 7364–7377. https://doi.org/10.1093/nar/gkq617
5. Charoensawan, V., Adryan, B., Martin, S., Söllner, C., Thisse, B., Thisse, C., Wright, G. J., & Teichmann, S. A. (2010). The impact of gene expression regulation on evolution of extracellular signaling pathways. Molecular & cellular proteomics : MCP, 9(12), 2666–2677. https://doi.org/10.1074/mcp.M110.003020
6. Hebenstreit, D., Fang, M., Gu, M., Charoensawan, V., van Oudenaarden, A., & Teichmann, S. A. (2011). RNA sequencing reveals two major classes of gene expression levels in metazoan cells. Molecular systems biology, 7, 497. https://doi.org/10.1038/msb.2011.28
7. Charoensawan, V., Janga, S. C., Bulyk, M. L., Babu, M. M., & Teichmann, S. A. (2012). DNA sequence preferences of transcriptional activators correlate more strongly than repressors with nucleosomes. Molecular cell, 47(2), 183–192. https://doi.org/10.1016/j.molcel.2012.06.028
8. Teichmann, S. A., Wigge, P. A., & Charoensawan, V. (2012). Uncovering the interplay between DNA sequence preferences of transcription factors and nucleosomes. Cell cycle (Georgetown, Tex.), 11(24), 4487–4488. https://doi.org/10.4161/cc.22666
9. Chutoam, P., Charoensawan, V., Wongtrakoongate, P., Kum-Arth, A., Buphamalai, P., & Tungpradabkul, S. (2013). RpoS and oxidative stress conditions regulate succinyl-CoA: 3-ketoacid-coenzyme A transferase (SCOT) expression in Burkholderia pseudomallei. Microbiology and immunology, 57(9), 605–615. https://doi.org/10.1111/1348-0421.12077
10. Tanramluk, D., Akavipat, R., & Charoensawan, V. (2013). Toward mobile 3D visualization for structural biologists. Molecular bioSystems, 9(12), 2956–2960. https://doi.org/10.1039/c3mb70361d
11. Suktitipat, B., Naktang, C., Mhuantong, W., Tularak, T., Artiwet, P., Pasomsap, E., Jongjaroenprasert, W., Fuchareon, S., Mahasirimongkol, S., Chantratita, W., Yimwadsana, B., Charoensawan, V., & Jinawath, N. (2014). Copy number variation in Thai population. PloS one, 9(8), e104355. https://doi.org/10.1371/journal.pone.0104355
12. Janvilisri, T., Suzuki, H., Scaria, J., Chen, J. W., & Charoensawan, V. (2015). High-Throughput Screening for Biomarker Discovery. Disease markers, 2015, 108064. https://doi.org/10.1155/2015/108064
13. Mhuantong, W., Charoensawan, V., Kanokratana, P., Tangphatsornruang, S., & Champreda, V. (2015). Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities. Biotechnology for biofuels, 8, 16. https://doi.org/10.1186/s13068-015-0200-8
14. Charoensawan, V., Martinho, C., & Wigge, P. A. (2015). "Hit-and-run": Transcription factors get caught in the act. BioEssays : news and reviews in molecular, cellular and developmental biology, 37(7), 748–754. https://doi.org/10.1002/bies.201400186
15. Tanramluk, D., Narupiyakul, L., Akavipat, R., Gong, S., & Charoensawan, V. (2016). MANORAA (Mapping Analogous Nuclei Onto Residue And Affinity) for identifying protein-ligand fragment interaction, pathways and SNPs. Nucleic acids research, 44(W1), W514–W521. https://doi.org/10.1093/nar/gkw314
16. Yang, W., Schuster, C., Beahan, C. T., Charoensawan, V., Peaucelle, A., Bacic, A., Doblin, M. S., Wightman, R., & Meyerowitz, E. M. (2016). Regulation of Meristem Morphogenesis by Cell Wall Synthases in Arabidopsis. Current biology : CB, 26(11), 1404–1415. https://doi.org/10.1016/j.cub.2016.04.026
17. Pinweha, P., Rattanapornsompong, K., Charoensawan, V., & Jitrapakdee, S. (2016). MicroRNAs and oncogenic transcriptional regulatory networks controlling metabolic reprogramming in cancers. Computational and structural biotechnology journal, 14, 223–233. https://doi.org/10.1016/j.csbj.2016.05.005
18. Jung, J. H., Domijan, M., Klose, C., Biswas, S., Ezer, D., Gao, M., Khattak, A. K., Box, M. S., Charoensawan, V., Cortijo, S., Kumar, M., Grant, A., Locke, J. C., Schäfer, E., Jaeger, K. E., & Wigge, P. A. (2016). Phytochromes function as thermosensors in Arabidopsis. Science (New York, N.Y.), 354(6314), 886–889. https://doi.org/10.1126/science.aaf6005
19. Jinawath, N., Bunbanjerdsuk, S., Chayanupatkul, M., Ngamphaiboon, N., Asavapanumas, N., Svasti, J., & Charoensawan, V. (2016). Bridging the gap between clinicians and systems biologists: from network biology to translational biomedical research. Journal of translational medicine, 14(1), 324. https://doi.org/10.1186/s12967-016-1078-3
20. Ezer, D., Jung, J. H., Lan, H., Biswas, S., Gregoire, L., Box, M. S., Charoensawan, V., Cortijo, S., Lai, X., Stöckle, D., Zubieta, C., Jaeger, K. E., & Wigge, P. A. (2017). The evening complex coordinates environmental and endogenous signals in Arabidopsis. Nature plants, 3, 17087. https://doi.org/10.1038/nplants.2017.87
21. Ezer, D., Shepherd, S. J. K., Brestovitsky, A., Dickinson, P., Cortijo, S., Charoensawan, V., Box, M. S., Biswas, S., Jaeger, K. E., & Wigge, P. A. (2017). The G-Box Transcriptional Regulatory Code in Arabidopsis. Plant physiology, 175(2), 628–640. https://doi.org/10.1104/pp.17.01086
22. Cortijo, S., Charoensawan, V., Brestovitsky, A., Buning, R., Ravarani, C., Rhodes, D., van Noort, J., Jaeger, K. E., & Wigge, P. A. (2017). Transcriptional Regulation of the Ambient Temperature Response by H2A.Z Nucleosomes and HSF1 Transcription Factors in Arabidopsis. Molecular plant, 10(10), 1258–1273. https://doi.org/10.1016/j.molp.2017.08.014
23. Dickinson, P. J., Kumar, M., Martinho, C., Yoo, S. J., Lan, H., Artavanis, G., Charoensawan, V., Schöttler, M. A., Bock, R., Jaeger, K. E., & Wigge, P. A. (2018). Chloroplast Signaling Gates Thermotolerance in Arabidopsis. Cell reports, 22(7), 1657–1665. https://doi.org/10.1016/j.celrep.2018.01.054
24. Cortijo, S., Charoensawan, V., Roudier, F., & Wigge, P. A. (2018). Chromatin Immunoprecipitation Sequencing (ChIP-Seq) for Transcription Factors and Chromatin Factors in Arabidopsis thaliana Roots: From Material Collection to Data Analysis. Methods in molecular biology (Clifton, N.J.), 1761, 231–248. https://doi.org/10.1007/978-1-4939-7747-5_18
25. Traewachiwiphak, S., Yokthongwattana, C., Ves-Urai, P., Charoensawan, V., & Yokthongwattana, K.(2018). Gene expression and promoter characterization of heat-shock protein 90B gene (HSP90B) in the model unicellular green alga Chlamydomonas reinhardtii. Plant science : an international journal of experimental plant biology, 272, 107–116. https://doi.org/10.1016/j.plantsci.2018.04.010
26. Nounjan, N., Chansongkrow, P., Charoensawan, V., Siangliw, J. L., Toojinda, T., Chadchawan, S., & Theerakulpisut, P. (2018). High Performance of Photosynthesis and Osmotic Adjustment Are Associated With Salt Tolerance Ability in Rice Carrying Drought Tolerance QTL: Physiological and Co-expression Network Analysis. Frontiers in plant science, 9, 1135. https://doi.org/10.3389/fpls.2018.01135
27. Shiao, M. S., Chiablaem, K., Charoensawan, V., Ngamphaiboon, N., & Jinawath, N. (2018). Emergence of Intrahepatic Cholangiocarcinoma: How High-Throughput Technologies Expedite the Solutions for a Rare Cancer Type. Frontiers in genetics, 9, 309. https://doi.org/10.3389/fgene.2018.00309
28. Kitdumrongthum, S., Metheetrairut, C., Charoensawan, V., Ounjai, P., Janpipatkul, K., Panvongsa, W., Weerachayaphorn, J., Piyachaturawat, P., & Chairoungdua, A. (2018). Dysregulated microRNA expression profiles in cholangiocarcinoma cell-derived exosomes. Life sciences, 210, 65–75. https://doi.org/10.1016/j.lfs.2018.08.058
29. Udom, N., Chansongkrow, P., Charoensawan, V., & Auesukaree, C. (2019). Coordination of the Cell Wall Integrity and High-Osmolarity Glycerol Pathways in Response to Ethanol Stress in Saccharomyces cerevisiae. Applied and environmental microbiology, 85(15), e00551-19. https://doi.org/10.1128/AEM.00551-19
30. Sonthiphand, P., Ruangroengkulrith, S., Mhuantong, W., Charoensawan, V., Chotpantarat, S., & Boonkaewwan, S. (2019). Metagenomic insights into microbial diversity in a groundwater basin impacted by a variety of anthropogenic activities. Environmental science and pollution research international, 26(26), 26765–26781. https://doi.org/10.1007/s11356-019-05905-5
31. Chanarat, S., Charoensawan, V., & Pakotiprapha, D. (2020). Running a lab amidst the COVID-19 crisis: how to stay productive during lockdowns and get ready for the New Normal. ScienceAsia : Journal of the Science Society of Thailand, 46(4), 377. https://doi.org/10.2306/scienceasia1513-1874.2020.068
32. Tong, M., Lee, K., Ezer, D., Cortijo, S., Jung, J., Charoensawan, V., Box, M. S., Jaeger, K. E., Takahashi, N., Mas, P., Wigge, P. A., & Seo, P. J. (2020). The Evening Complex Establishes Repressive Chromatin Domains Via H2A.Z Deposition. Plant physiology, 182(1), 612–625. https://doi.org/10.1104/pp.19.00881
33. Lao-On, U., Rojvirat, P., Chansongkrow, P., Phannasil, P., Siritutsoontorn, S., Charoensawan, V., & Jitrapakdee, S. (2020). c-Myc directly targets an over-expression of pyruvate carboxylase in highly invasive breast cancer. Biochimica et biophysica acta. Molecular basis of disease, 1866(3), 165656. https://doi.org/10.1016/j.bbadis.2019.165656
34. Schweitzer, K. S., Jinawath, N., Yonescu, R., Ni, K., Rush, N., Charoensawan, V., Bronova, I., Berdyshev, E., Leach, S. M., Gillenwater, L. A., Bowler, R. P., Pearse, D. B., Griffin, C. A., & Petrache, I. (2020). IGSF3 mutation identified in patient with severe COPD alters cell function and motility. JCI insight, 5(14), e138101. https://doi.org/10.1172/jci.insight.138101
35. Sukjoi, W., Siritutsoontorn, S., Chansongkrow, P., Waiwitlikhit, S., Polyak, S. W., Warnnissorn, M., Charoensawan, V., Thuwajit, C., & Jitrapakdee, S. (2020). Overexpression of Holocarboxylase Synthetase Predicts Lymph Node Metastasis and Unfavorable Prognosis in Breast Cancer. Anticancer research, 40(8), 4557–4565. https://doi.org/10.21873/anticanres.14461
36. Gavrin, A., Rey, T., Torode, T. A., Toulotte, J., Chatterjee, A., Kaplan, J. L., Evangelisti, E., Takagi, H., Charoensawan, V., Rengel, D., Journet, E. P., Debellé, F., de Carvalho-Niebel, F., Terauchi, R., Braybrook, S., & Schornack, S. (2020). Developmental Modulation of Root Cell Wall Architecture Confers Resistance to an Oomycete Pathogen. Current biology : CB, 30(21), 4165–4176.e5. https://doi.org/10.1016/j.cub.2020.08.011
37. Ngamkham, J., Thuwajit, C., Thuwajit, P., Khamwachirapithak, P., Lertsuwan, K., Charoensawan, V., & Jitrapakdee, S. (2020). Overexpression of Pyruvate Carboxylase Is Correlated With Colorectal Cancer Progression and Supports Growth of Invasive Colon Cancer HT-29 Cell Line. Anticancer research, 40(11), 6285–6293. https://doi.org/10.21873/anticanres.14649
38. Mhuantong, W., Charoensri, S., Poonsrisawat, A., Pootakham, W., Tangphatsornruang, S., Siamphan, C., Suwannarangsee, S., Eurwilaichitr, L., Champreda, V., Charoensawan, V., & Chantasingh, D. (2021). High Quality Aspergillus aculeatus Genomes and Transcriptomes: A Platform for Cellulase Activity Optimization Toward Industrial Applications. Frontiers in bioengineering and biotechnology, 8, 607176. https://doi.org/10.3389/fbioe.2020.607176
39. Poonpanichakul, T., Chan-In, W., Opasawatchai, A., Loison, F., Matangkasombut, O., Charoensawan, V., Matangkasombut, P., & DENFREE Thailand (2021). Innate Lymphoid Cells Activation and Transcriptomic Changes in Response to Human Dengue Infection. Frontiers in immunology, 12, 599805. https://doi.org/10.3389/fimmu.2021.599805
40. Jenkitkonchai, J., Marriott, P., Yang, W., Sriden, N., Jung, J. H., Wigge, P. A., & Charoensawan, V. (2021). Exploring PIF4's contribution to early flowering in plants under daily variable temperature and its tissue-specific flowering gene network. Plant direct, 5(7), e339. https://doi.org/10.1002/pld3.339
41. Opasawatchai, A., Nguantad, S., Sriwilai, B., Matangkasombut, P., Matangkasombut, O., Srisatjaluk, R., & Charoensawan, V. (2021). Single-Cell Transcriptomic Profiling of Human Dental Pulp in Sound and Carious Teeth: A Pilot Study. Frontiers in Dental Medicine, 2, Article 806294. https://doi.org/10.3389/fdmed.2021.806294
42. Poonpanichakul, T., Shiao, M. S., Jiravejchakul, N., Matangkasombut, P., Sirachainan, E., Charoensawan, V., & Jinawath, N. (2021). Capturing tumour heterogeneity in pre- and post-chemotherapy colorectal cancer ascites-derived cells using single-cell RNA-sequencing. Bioscience reports, 41(12), BSR20212093. https://doi.org/10.1042/BSR20212093
43. Sriden, N., & Charoensawan, V. (2022). Large-scale comparative transcriptomic analysis of temperature-responsive genes in Arabidopsis thaliana. Plant molecular biology, 110(4-5), 425–443. https://doi.org/10.1007/s11103-021-01223-y
44. Arora, J. K., Opasawatchai, A., Poonpanichakul, T., Jiravejchakul, N., Sungnak, W., DENFREE Thailand, Matangkasombut, O., Teichmann, S. A., Matangkasombut, P., & Charoensawan, V. (2022). Single-cell temporal analysis of natural dengue infection reveals skin-homing lymphocyte expansion one day before defervescence. iScience, 25(4), 104034. https://doi.org/10.1016/j.isci.2022.104034
45. Charoensawan, V., Cortijo, S., Domijan, M., & Negrão, S. (2022). Editorial: Multi-Disciplinary Approaches to Plant Responses to Climate Change. Frontiers in plant science, 13, 876432. https://doi.org/10.3389/fpls.2022.876432
46. Toosaranont, J., Ruschadaariyachat, S., Mujchariyakul, W., Arora, J. K., Charoensawan, V., Suktitipat, B., Palmer, T. N., Fletcher, S., Wilton, S. D., & Mitrpant, C. (2022). Antisense Oligonucleotide Induction of the hnRNPA1b Isoform Affects Pre-mRNA Splicing of SMN2 in SMA Type I Fibroblasts. International journal of molecular sciences, 23(7), 3937. https://doi.org/10.3390/ijms23073937
47. Thumkeo, D., Punyawatthananukool, S., Prasongtanakij, S., Matsuura, R., Arima, K., Nie, H., Yamamoto, R., Aoyama, N., Hamaguchi, H., Sugahara, S., Takeda, S., Charoensawan, V., Tanaka, A., Sakaguchi, S., & Narumiya, S. (2022). PGE2-EP2/EP4 signaling elicits immunosuppression by driving the mregDC-Treg axis in inflammatory tumor microenvironment. Cell reports, 39(10), 110914. https://doi.org/10.1016/j.celrep.2022.110914
48. Chantaraamporn, J., Phumikhet, P., Nguantad, S., Techo, T., & Charoensawan, V. (2022). Machine learning applications for transcription level and phenotype predictions. IUBMB life, 74(12), 1273–1287. https://doi.org/10.1002/iub.2693
49. Arora, J. K., Opasawatchai, A., Teichmann, S. A., Matangkasombut, P., & Charoensawan, V. (2023). Computational workflow for investigating highly variable genes in single-cell RNA-seq across multiple time points and cell types. STAR protocols, 4(3), 102387. https://doi.org/10.1016/j.xpro.2023.102387
50. Hepkema, J., Lee, N. K., Stewart, B. J., Ruangroengkulrith, S., Charoensawan, V., Clatworthy, M. R., & Hemberg, M. (2023). Predicting the impact of sequence motifs on gene regulation using single-cell data. Genome biology, 24(1), 189. https://doi.org/10.1186/s13059-023-03021-9
51. Khamwachirapithak, P., Guillaume-Schoepfer, D., Chansongkrow, P., Teichmann, S. A., Wigge, P. A., & Charoensawan, V. (2023). Characterizing Different Modes of Interplay Between Rap1 and H3 Using Inducible H3-depletion Yeast. Journal of molecular biology, 435(24), 168355. https://doi.org/10.1016/j.jmb.2023.168355
52. Phosuwan, S., Nounjan, N., Theerakulpisut, P., Siangliw, M., & Charoensawan, V. (2024). Comparative quantitative trait loci analysis framework reveals relationships between salt stress responsive phenotypes and pathways. Frontiers in plant science, 15, 1264909. https://doi.org/10.3389/fpls.2024.1264909
53. Leawtrakun, J., Aesomnuk, W., Khanthong, S., Dumhai, R., Songtoasesakul, D., Phosuwan, S., Nuanpirom, J., Charoensawan, V., Siangliw, J. L., Ruanjaichon, V., Toojinda, T., Wanchana, S., Siangliw, M., & Arikit, S. (2024). Identification of Candidate Genes for Salt Tolerance at Seedling Stage in Rice Using QTL-Seq and Chromosome Segment Substitution Line-Derived Population. Agronomy, 14(5), 929. https://doi.org/10.3390/agronomy14050929
54. Arora, J. K., Matangkasombut, P., Charoensawan, V., & Opasawatchai, A. (2024). Single-cell RNA sequencing reveals the expansion of circulating tissue-homing B cell subsets in secondary acute dengue viral infection. Heliyon, 10(10), Article e30314. https://doi.org/10.1016/j.heliyon.2024.e30314
55. Chiablaem, K., Jinawath, A., Nuanpirom, J., Arora, J. K., Nasaree, S., Thanomchard, T., Singhto, N., Chittavanich, P., Suktitipat, B., Charoensawan, V., Chairoungdua, A., Jinn-Chyuan Sheu, J., Kiyotani, K., Svasti, J., Nakamura, Y., & Jinawath, N. (2024). Identification of RNF213 as a Potential Suppressor of Local Invasion in Intrahepatic Cholangiocarcinoma. Laboratory investigation; a journal of technical methods and pathology, 104(7), 102074. https://doi.org/10.1016/j.labinv.2024.102074
56. Jiravejchakul, N., Chan-In, W., Thuncharoen, W., DENFREE Thailand, Sungnak, W., Charoensawan, V., Vacharathit, V., & Matangkasombut, P. (2025). Cytokine and chemokine kinetics in natural human dengue infection as predictors of disease outcome. Scientific reports, 15(1), 15612. https://doi.org/10.1038/s41598-025-99628-y
57. Kock, K. H., Tan, L. M., Han, K. Y., Ando, Y., Jevapatarakul, D., Chatterjee, A., Lin, Q. X. X., Buyamin, E. V., Sonthalia, R., Rajagopalan, D., Tomofuji, Y., Sankaran, S., Park, M. S., Abe, M., Chantaraamporn, J., Furukawa, S., Ghosh, S., Inoue, G., Kojima, M., Kouno, T., Lim J, Myouzen, K., Nguantad, S., Oh, JM., Rayan, NA., Sarkar, S., Suzuki, A., Thungsatianpun, N., Venkatesh, P.N., Moody, J., Nakano, M., Chen, Z., Tian, C., Zhang, Y., Tong, Y., Tan, C.T.Y., Tizazu, A.M., Loh, M., Hwang, Y.Y., Ho, RC., Larbi, A., Ng, T.P., Won, H.H., Wright, F.A., Villani, A.C., Park, J.E., Choi, M., Liu, B., Maitra, A., Pithukpakorn, M., Suktitipat, B., Ishigaki, K., Okada, Y., Yamamoto, K., Carninci, P., Chambers, J.C., Hon, C.C., Matangkasombut, P., Charoensawan, V., Majumder, P.P., Shin, J.W., Park, W.Y., Prabhakar, S. (2025). Asian diversity in human immune cells. Cell, 188(8), 2288–2306.e24. https://doi.org/10.1016/j.cell.2025.02.017
58. Thadtapong, N., Charoensawan, V., Saksmerprome, V., & Chaturongakul, S. (2025). Pathogenic Characteristics of Shrimp Early Mortality Syndrome (EMS)-Causing Vibrio parahaemolyticus: A Comparative Transcriptomic Study Suggests the Relationship Between Metabolic Fitness and Virulence Gene Expression.
Environmental microbiology reports, 17(6), e70219. https://doi.org/10.1111/1758-2229.70219